欢迎访问唐山市澳门威尼克斯人网站钢铁机械制造有限公司
销售部:
供应部:
邮箱:tsscjx@cegoogle.cn
sanchuan@cegoogle.cn
传真:
网址:sclvfuji.cn
地址:唐山市路南区女织寨村南
应用焦炭、含铁矿石(天然富块矿及烧结矿和球团矿)和熔剂(石灰石、白云石)在竖式反应器——高炉内连续生产液态生铁的方法。它是现代钢铁生产的重要环节。现代高炉炼铁是由古代竖炉炼铁法改造、发展起来的。尽管世界各国研究开发了很多炼铁方法,但由于此方法工艺相对简单,产量大,劳动生产率高,能耗低,故高炉炼铁仍是现代炼铁的主要方法,其产量占世界生铁总产量的95%以上。铁焦技术编辑铁焦技术通过使用价格低廉的非黏结煤或微黏结煤用作生产原燃料进行煤矿的生产,将其与铁矿粉混合,制成块状,用连续式炉进行加热干馏得到含三成铁、七成焦的铁焦 。再经过专业设备加工,最后经过冶炼就能得到与原始技术一样的炼铁成果。这一技术使用较高含量的铁焦代替原始含量,经过实验表明会节省大量的焦与主焦煤,也通过这一试验说明铁焦具有提高反应速率的作用,证明了在高炉炼铁中铁焦含量至少可以达到 30%。这项技术正在日本的各个工厂进行实际生产,而且取得了一定的成果。但是现阶段技术还未完全成型,还需要大量实验进行完善。生物质编辑生物质指的是,动物、植物、微生物通过新陈代谢产生的有机物,这种有机物很适合进行热解行为,并且可以碳化温度来实现二氧化碳排放量的减少,算是这一领域的新型能源之一。部分学者通过研究表明,生物质和废塑料很适合应用在高炉炼铁的某些工艺中,而且不需要额外的人、物力、财力的消耗。生物质可以代替煤粉等还原剂进行高炉喷吹。其相较于煤粉还有着一定的优势,例如可以控制二氧化碳的含量,还能提高原料的还原能力,并且使高炉恒温带的温度降低,使气体得到更好的利用。喷吹焦炉煤气编辑因为焦炉煤气的主要成分是氢气,含有一些其他的碳氢化合物。这样一来就使得高炉炼铁的能源更加清洁。而且它可以充当良好的还原剂,不仅如此,还提高了碳氢元素的利用率,降低了化石燃料的使用量,极大的促进了节能减排的步伐。我国已经建设了利用相关技术的工厂,并且进行了试生产,通过生产过程的数据显示,对于燃料的需求量明显降低,这就证明了焦炉煤气在炉中起到了明显的作用,调节了炉内的工作环境,使高炉的生产得到了保证。喷吹废塑料编辑这种技术在德国与日本早就投入到日常的生产之中,早在 1994年德国企业就在研究这一技术,在 1995 年了研制出第一台运用这一技术的设备,并进行了技术的完善,为这一技术投入使用打下了坚实的基础。而日本则在利用废旧塑料代替焦炭上面取得了一定成就,根据数据表明,利用废旧塑料产生的能源有 80% 得到利用,这就表明其可以很好的代替原有材料进行高炉炼铁 综合喷吹编辑高炉除尘灰指的是炉前出铁时产生的粉尘和炉顶主皮带料头部放料的过程中产生的粉尘经过一定比例的混合制成的,但由于这两种粉尘的颗粒极为细小,很不利于收集,但通过设想就可得知如果将其收回并完美利用,就是最好的节能方式之一。这样不仅可以使煤粉的燃烧效果得到提高,还能回收一部分浪费的铁元素,通过合理控制其添加量就能有效的提升产量,并且对本来的废料进行回收,充分的进行了材料的利用,不仅有助于提高产量,还节省了一部分资金。技术优化编辑粒煤喷吹技术高炉粒煤喷吹技术在国外已经有很多年的历史,例如在英、法、美都有大量应用这一技术的厂区存在。在我国却还没有大量应用,但通过事实证明这一技术也是可以进行推广的。与传统的技术相比该技术拥有几项优点,对比粉煤技术,粒煤技术更加安全,不容易造成爆炸,而且在制造过程中也会更加节省能源。粒煤在理论上可以适用于各种技术,这样企业就可根据自身需要进行选择,而且在相同的效率前提下,粒煤的设备投资只有粉煤的三成。而且在使用中的成本也比较低,所以这一技术更值得推广。合理配煤通过合理配煤,不仅可以减少资金消耗,还可以根据煤种的特点进行调整配比,使其性能达到最佳。要想降低能源方面的资金消耗的话就要将眼光放到一些产量高、价格低但性能并不是特别好的煤种上,例如褐煤,这种煤因为煤化较低,导致含有水分较高,燃烧产生的热量也较少,但其含有的硫元素较少,可磨性也很好,可以满足高炉喷吹所需煤的要求,在生产中就可以适当的应用,通过科学的调整配比,就可以既降低资金的投入又可以减少含水量高带来的不利影响。提高燃烧效率当前情况下,高炉喷煤技术已经比较熟练,这时考虑如何提高煤粉的燃烧效率就成为优化技术的又一重要突破口。就喷入煤粉之后而言,煤粉在炉内发生燃烧,那么如何提升燃烧速度是要重点考虑的,加入助燃剂和降低煤粉燃点都是比较好的办法。其中加入助燃剂已经处于研究之中的状态,根据实验结果表明,加入适当的助燃剂可以有效的缩短煤粉的点燃时间,使煤粉的燃烧速率得到显著提高。
根据图纸尺寸将 C 型钢(或方通)用砂轮切割机截成合适要求的长度,然后焊接骨架。焊接工序使用交流弧焊机、E43 系列,为防止咬肉和焊头等缺陷,采用小电流及较小直径焊条(2.5-3.0mm)施焊。并使用辅助夹具和卡具,保证结构的几何尺寸的准确。钢骨架用水准仪配合钢丝线进行检测矫正。制作过程中应随时测量及矫正,变形要控制在允许范围之内。骨架和支托盘面焊接在一起,骨架制作可将骨架拼装焊接一部分,然后抬到支托盘上焊接牢固,也可直接在支托盘上拼装焊接,同一坡度方向的骨架应在一个面上。骨架制作安装好后,应清除骨架表面上尘土、铁屑、油污等。根据图纸要求,再补刷防锈漆,待防锈漆彻底干透后,然后再刷面漆及保护漆等。对于屋面的金属骨架,涂装一般采用手工刷涂和空气喷涂法两种。
基本概况:在高温下,用还原剂将铁矿石还原得到生铁的生产过程。炼铁的主要原料是铁矿石、焦炭、石灰石、空气。铁矿石有赤铁矿(Fe2O3)和磁铁矿(Fe3O4)等。铁矿石的含铁量叫做品位,在冶炼前要经过选矿,除去其它杂质,提高铁矿石的品位,然后经破碎、磨粉、烧结,才可以送入高炉冶炼。焦炭的作用是提供热量并产生还原剂一氧化碳。石灰石是用于造渣除脉石,使冶炼生成的铁与杂质分开。炼铁的主要设备是高炉。冶炼时,铁矿石、焦炭、和石灰石从炉顶进料口由上而下加入,同时将热空气从进风口由下而上鼓入炉内,在高温下,反应物充分接触反应得到铁。高炉炼铁是指把铁矿石和焦炭,一氧化碳,氢气等燃料及熔剂(从理论上说把金属活动性比铁强 的金属和矿石混合后高温也可炼出铁来)装入高炉中冶炼,去掉杂质而得到金属铁(生铁)。基本流程:高炉冶炼是把铁矿石还原成生铁的连续生产过程。铁矿石、焦炭和熔剂等固体原料按规定配料比由炉顶装料装置分批送入高炉,并使炉喉料面保持一定的高度。焦炭和矿石在炉内形成交替分层结构。炉前操作一、炉前操作的任务1、利用开口机、泥炮、堵渣机等专用设备和各种工具,按规定的时间分别打开渣、铁口(现今渣铁口合二为一),放出渣、铁,并经渣铁沟分别流入渣、铁罐内,渣铁出完后封堵渣、铁口,以保证高炉生产的连续进行。2.完成渣、铁口和各种炉前专用设备的维护工作。3、制作和修补撇渣器、出铁主沟及渣、铁沟。4、更换风、渣口等冷却设备及清理渣铁运输线等一系列与出渣出铁相关的工作。高炉基本操作制度:高炉炉况稳定顺行:一般是指炉内的炉料下降与煤气流上升均匀,炉温稳定充沛,生铁合格,高产低耗。操作制度:根据高炉具体条件(如高炉炉型、设备水平、原料条件、生产计划及品种指标要求)制定的高炉操作准则。高炉基本操作制度:装料制度、送风制度、炉缸热制度和造渣制度。高炉横断面为圆形的炼铁竖炉。用钢板作炉壳,壳内砌耐火砖内衬。高炉本体自上而下分为炉喉、炉身、炉腰、炉腹 、炉缸5部分。由于高炉炼铁技 术经济指标良好,工艺 简单 ,生产量大,劳动生产效率高,能耗低等优点,故这种方法生产的铁占世界铁总产量的绝大部分。高炉生产时从炉顶装入铁矿石、焦炭、造渣用熔剂(石灰石),从位于炉子下部沿炉周的风口吹入经预热的空气。在高温下焦炭(有的高炉也喷吹煤粉、重油、天然气等辅助燃料)中的碳同鼓入空气中的氧燃烧生成的一氧化碳和氢气,在炉内上升过程中除去铁矿石中的氧,从而还原得到铁。炼出的铁水从铁口放出。铁矿石中未还原的杂质和石灰石等熔剂结合生成炉渣,从渣口排出。产生的煤气从炉顶排出,经除尘后,作为热风炉、加热炉、焦炉、锅炉等的燃料。高炉冶炼的主要产品是生铁 ,还有副产品高炉渣和高炉煤气。高炉热风炉热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。铁水罐车铁水罐车用于运送铁水,实现铁水在脱硫跨与加料跨之间的转移或放置在混铁炉下,用于高炉或混铁炉等出铁。
氧枪是将高压高纯度氧气以超音速速度吹入转炉内金属熔池上方,并带有高压水冷却保护系统的管状设备。又叫喷枪。它是氧气顶吹炼钢的重要设备定制转炉炉底周口施工。在吹炼过程中,氧枪不但要承受火点2500℃左右的高温区的热辐射,还要承受钢和渣激烈的冲刷,工作条件十分恶劣。因此氧枪要有牢固的金属结构和强水冷系统,以保证它能耐受高温、抗冲刷侵蚀和抵抗振动。氧枪最先应用于平炉炼钢炉顶吹氧,1952年氧气顶吹转炉炼钢法问世,氧枪成为它的关键设备。此后,氧枪的应用范围又扩大到电弧炉和钢包精炼炉等领域;功能也从单一喷吹氧气发展到兼能喷吹造渣粉剂、燃烧粉剂的复合氧枪以及具有二次燃烧功能的分流式或双流式多层氧枪。氧枪对吹炼的影响作用是通过氧气射流流股与熔池的相互作用来实现的,而这种作用主要取决于射流到达熔池表面时的速度大小及其分布,因此氧枪喷头的各项工艺参数的寻优与结构的优化设计非常重要。应用领域:氧枪主要应用在钢铁行业、冶金行业等。氧枪,是氧气转炉炼钢中的主要工艺设备之一,其性能特征直接影响到冶炼效果和吹炼时间,从而影响到钢材的质量和产量。
为消除对大气环境的污染,必须进一步做好烟尘处理,积极采用干法除尘技术,节约水资源。回收能源介质的高效利用都有许多项目需要认真研发。努力将炼钢厂建设成为无污染、零排放的绿色工厂3.2、吹炼终点动态控制技术终点控制是炼钢操作的技术关键。国内钢铁企业多采用人工经验控制,无法满足洁净钢和高品质钢种生产的质量要求。因此,尽快采取措施提高炼钢终点的控制精度和命中率已成为当前国内炼钢生产中迫切需要解决的技术问题。提高转炉炼钢终点控制水平的关键技术主要有以下两点。1)优化复吹工艺,促进钢渣平衡,稳定终点操作; 2)采用计算机终点动态控制技术,实现不倒炉出钢及提高出钢口寿命,缩短出钢时间,进而缩短转炉辅助作业时间,也是提高转炉生产效率的重要技术措施。3.3转炉高效吹炼工艺 近年来,国内各大钢企陆续开展了提高转炉生产效率,加大供氧强度,实现平稳吹炼的技术研究,并开发出一整套转炉高效冶炼技术,使转炉生产效率大幅提高。采用以下技术有利于进一步提高供氧强度,从而使转炉生产效率得到提高。1)提高我国转炉底吹搅拌强度,优化底吹搅拌工艺,保证全炉役内底吹效果,并结合该工艺进行转炉长寿技术研究;2)大幅减少渣量,对于少渣冶炼转炉,由于渣量减少可大幅提高供氧强度;3)优化改进氧枪结构,加快研发集束氧枪在转炉中应用、CO2和高比例CaCO3在转炉生产中的应用等全新工艺与装备,提高喷枪化渣速度,减少熔池喷溅和避免产生大量FeO粉尘是大幅提高供氧强度的关键。1)我国小型转炉目前还有相当大的比例,与精炼、连铸的匹配关系还有待优化。
摘要相比较电炉而言,近十年来,我国转炉炼钢生产流程工艺与装备技术的进步幅度是明显的。而未来,这种生产流程结构不尽合理的现象亦会逐步改变。近年来,我国转炉钢产量占粗钢总产量的比例日益增强,2003年我国转炉钢比为82.4%,到2013年这一比例已增至93%,而近十年来,世界转炉钢与电炉钢比例基本保持在7:3的平均水平,我国与之相比转炉钢比过高。未来我国这种钢铁生产流程结构不尽合理的现象会随着我国资源条件、市场需求变化和绿色低碳环境的需求而逐步改变。相比较而言,近十年来,我国转炉生产流程工艺与装备技术的进步幅度更加明显。1、转炉炼钢技术发展现状目前,转炉炼钢仍是世界上最主要的炼钢方法,其钢产量占世界钢总产量的65%以上。由于我国废钢资源短缺,电力缺乏,电价偏高,因此电炉钢的产量增长受到一定程度的制约,而随着生铁资源的充裕也给转炉钢产量的增长提供了良好条件。因此,转炉钢产量近年来获得了快速增长。2905年我国转炉钢产量为3.14亿吨,到2013年提高到7.65亿吨。随着转炉钢产量的增加,转炉炼钢生产工艺技术也得到迅速发展。转炉炼钢技术进步主要体现在以下几个方面。1.1、转炉装备日趋大型化2001年我国100吨以上大型转炉只有30座,产能为3602万吨。至2013年增长到345座,产能超过5.08亿吨,13年间大型转炉的生产能力增长了14倍。其中300吨转炉从3座增加到11座,产能从678万吨增长到2759万吨以上。从数量上来看,我国现有转炉中以100-199吨的转炉数量最多,而200吨及以上的转炉数量最少,我国仍然保有一定数量的30吨以下的转炉。因此,淘汰落后产能任务艰巨。目前,我国100吨及以上转炉的产能约占全部转炉产能的67.5%。随着淘汰落后产能力度的加大,我国转炉将进一步朝着大型化方向发展。1.2、转炉生产工艺进一步优化提高钢材洁净度是21世纪钢材质量发展的重大技术方向。为提高钢材质量且扩大冶炼钢种,我国大、中型转炉炼钢厂都相继增建了铁水脱硫装置和二次精炼装置。近年来新建的转炉炼钢厂大多配置了铁水脱硫装置,并根据冶炼钢种的要求配置了相应的炉外精炼装置,一般多采用LF精炼,有些转炉炼钢厂还配置了Ⅵ)精炼装置,从而为高附加值钢种的生产提供了有利条件。我国自主设计建设的京唐公司300吨转炉采用了国际上最先进的脱磷炉与脱碳炉分工、联合生产的工艺,京唐公司是国际上最早采用这一先进工艺的300吨转炉大型炼钢厂。经过近两年的技术攻关,脱磷炉生产周期28min,脱碳炉32min;单炉班产炉数从7-8炉次提高至16炉次,转炉生产效率提高1倍,出钢温度平均降低20℃。铁水“三脱”预处理比例达到90%;月平均转炉终点[P]为0.006%,P+S]为150×10-6;和炉外精炼相匹配可稳定生产[P+S50×10-6的高洁净钢。石灰总消耗量从传统流程的50kg/t,下降到24.3kg/t,炼钢总渣量由110kg/t下降到的47kg/t,钢铁料消耗降低9.lkg/t,比传统转炉炼钢成本降低37.39元/t钢,标志着我国大型转炉炼钢技术已接近国际领先水平。